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ABSTRACT 

Whether the nervous system relies on modularity to simplify acquisition and control of 

complex motor skills remains controversial. To date, evidence for modularity has been 

indirect, based on statistical regularities in the motor commands captured by muscle 

synergies. Here we provide direct evidence by testing the prediction that in a truly modular 

controller it must be harder to adapt to perturbations that are incompatible with the modules. 

We investigated a reaching task in which human subjects used myoelectric control to move a 

mass in a virtual environment. In this environment we could perturb the normal muscle-to-

force mapping, as in a complex surgical rearrangement of the tendons, by altering the 

mapping between recorded muscle activity and simulated force applied on the mass. After 

identifying muscle synergies, we performed two types of virtual surgeries. After compatible 

virtual surgeries, a full range of movements could still be achieved recombining the 

synergies, whereas after incompatible virtual surgeries new or modified synergies would be 

required. Adaptation rates after the two types of surgery were compared. If synergies were 

only a parsimonious description of the regularities in the muscle patterns generated by a non-

modular controller we would expect adaptation rates to be similar, as both types of surgeries 

could be compensated with similar changes in the muscle patterns. In contrast, as predicted 

by modularity, we found strikingly faster adaptation after compatible surgeries than after 

incompatible ones. These results indicate that muscle synergies are key elements of a 

modular architecture underlying motor control and adaptation.  
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INTRODUCTION 

Human motor skills are remarkably complex because they require coordinating many 

muscles acting on many joints (Bernstein, 1967). The nervous system might achieve motor 

coordination by combining basic control modules shared across skills and task conditions 

(Bizzi et al., 2008).  To date, evidence for modularity has come mainly from the observation 

of low-dimensionality in the muscle activity patterns recorded during a variety of motor 

behaviors in different species. Indeed, muscle patterns can be reconstructed by combinations 

of a small number of muscle synergies, coordinated recruitment of muscle groups with 

specific activation patterns (Tresch et al., 1999; d'Avella et al., 2003; Hart and Giszter, 2004; 

Ivanenko et al., 2004; Ting and Macpherson, 2005; d'Avella et al., 2006; Torres-Oviedo and 

Ting, 2007; Overduin et al., 2008; Dominici et al., 2011; Overduin et al., 2012). However, 

low-dimensional output might also be observed in a non-modular controller due to task 

characteristics or biomechanical constraints (Todorov, 2004; Kutch and Valero-Cuevas, 

2012).  

Direct evidence for modularity would come from testing an experimental 

manipulation that can distinguish a modular controller from a non-modular one (d'Avella et 

al., 2008; Tresch and Jarc, 2009; d'Avella and Pai, 2010). Here we tested a manipulation of 

the mapping between muscle activations and hand forces that could make such a distinction. 

To generate a given force, a controller must find an appropriate muscle pattern. In a non-

modular controller no further structure is assumed.  In contrast, in a modular controller using 

muscle synergies, the motor command is produced by a weighted combination of muscle 

synergies, each specifying a specific balance of muscle activations, and the controller must 

find appropriate combination weights. Consider a surgical rearrangement of the tendons of all 

the muscles contributing to force generation and altering the force component produced by a 

given activation of each muscle. A special class of such surgeries could be used to distinguish 
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the two types of controllers.  All the surgeries are benign, in that it would still be possible to 

produce any target force after surgery with an appropriate muscle pattern.  However, some 

surgeries are incompatible with the synergies. Figure 1 illustrates this concept using an 

idealized arm with two pairs of antagonist muscles. In the intact arm, a hypothetical synergy 

would recruit two muscles generating forces in the direction of the summed forces of the 

individual muscles. After the surgery, the individual muscle forces would cancel each other 

and the synergy no longer generates any force. A modular controller would then be unable to 

generate forces in all directions without new or modified synergies. Thus, modularity predicts 

that adaptation to incompatible surgeries is harder than adaptation to compatible surgeries as 

the latter only requires recombining existing synergies.  

We constructed such surgeries non-invasively in a virtual environment in which 

human subjects performed a reaching task using myoelectric signals to control the simulated 

force applied on a virtual mass. We then tested the hypothesis that the controller involved in 

the generation of forces at the hand is modular by comparing adaptation rates after 

compatible and incompatible virtual surgeries. 

 

MATERIALS & METHODS 

We asked naïve participants to reach targets on a virtual desktop by displacing a cursor (i.e., a 

virtual spherical handle) according to either the force applied on a physical handle (force 

control) or the force estimated from the EMG activity recorded from many shoulder and arm 

muscles (myoelectric or EMG control). Initially the reaching task was performed under force 

control and, for each individual participant, the force and EMG data collected were used to 

estimate an EMG-to-force matrix by multiple linear regressions. The same EMG data were 

also used to identify a synergy matrix by non-negative matrix factorization. Under EMG 

control we could arbitrarily modify the EMG-to-force map thus performing virtual surgeries 
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on the musculoskeletal system. We could then compare the effects of a compatible virtual 

surgery with those of an incompatible one.  

 

Participants. Sixteen right-handed naïve subjects (mean age 24.2 ± 2.4 years, s.d., 8 females) 

participated in the main experiment (n = 8) and in a control experiment (n = 8) after giving 

written informed consent. All procedures were conducted in conformance with the 

Declaration of Helsinki and were approved by the Ethical Review Board of Santa Lucia 

Foundation. 

 

Experimental set-up. Subjects sat in front of a desktop on a racing car seat with their torso 

immobilized by safety belts, their right forearm inserted in a splint, immobilizing hand, wrist, 

and forearm. The center of the palm was aligned with the body midline at the height of the 

sternum and the elbow was flexed by approximately 90°. The subjects’ view of their hand 

was occluded by a 21-inch LCD monitor inclined with its surface approximately 

perpendicular to the subjects’ line of sight when looking at their hand (Figure 2A).  After 

calibration, the monitor could display a virtual desktop matching the real desktop, a spherical 

cursor matching, at rest, the position of the center of the palm and moving on a horizontal 

plane, and spherical targets on the same plane (Figure 2B). A steel bar at the base of the splint 

was attached to a 6-axis force transducer (Delta F/T Sensor, ATI Industrial Automation, 

Apex, NC, USA) positioned below the desktop to record isometric forces and torques. 

Surface electromyographic (EMG) activity from 13 muscles acting on the shoulder and 

elbow: brachioradialis (BracRad), biceps brachii short head (BicShort), biceps brachii long 

head (BicLong), triceps brachii lateral head (TriLat), triceps brachii long head (TriLong), 

infraspinatus (InfraSp), anterior deltoid (DeltA), medial deltoid (DeltM), posterior deltoid 

(DeltP), pectoralis major (PectMaj), teres major (TerMaj), latissimus dorsi (LatDorsi),  
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middle trapezius (TrapMid). EMG activity was recorded with active bipolar electrodes (DE 

2.1, Delsys Inc., Boston, MA), band-pass filtered (20-450 Hz) and amplified (gain 1000, 

Bagnoli-16, Delsys Inc.). Force and EMG data were digitized at 1 KHz using an A/D PCI 

board (PCI-6229, National Instruments, Austin, TX, USA). The virtual scene was rendered 

by a PC workstation with a refresh rate of 60 Hz using custom software. Cursor position 

information was processed by a second workstation running a real-time operating system and 

transmitted to the first workstation. Cursor motion was simulated in real time using an 

adaptive mass-spring-damper (MSD) filter (Park and Meek, 1995). Either the actual force 

recorded by the transducer force (force control) or the force estimated in real-time from the 

recorded and rectified EMGs (myoelectric or EMG control) using a linear mapping (EMG-to-

force matrix, see below) was applied to a critically damped virtual mass fixed to the cursor’s 

position. To maintain fast response to changes in force while reducing the effect of 

myoelectric noise, the simulated mass was adapted dynamically as a function of the rate of 

change of the magnitude of the recorded force ( f ) according to the sigmoidal function 

max max
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where mmax is the asymptotic mass, a is the slope parameter, b is the offset (mmax = 1 Kg, a = 

0.1, b = 0.05 Kg, maxf  = 50 Ns-1 during EMG control). Thus, when the subject generated a 

constant force, e.g., when trying to hold the cursor in fixed position, the simulated mass was 

large and the MSD filtering was more effective in reducing cursor motion due to myoelectric 

noise. In contrast, in response to a change of force output, e.g., when the subject tried to 

quickly reach the target, the simulated mass was small, shortening the delay introduced by the 

filter and making the cursor more responsive. 
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Experimental protocol. Subjects initially performed two blocks of trials in force control and 

the rest of the experiment in EMG control. In the first force control block, the mean 

maximum voluntary force (MVF) along 8 directions (separated by 45 deg) in the horizontal 

plane was estimated as the mean of the maximum force magnitude recorded across 16 trials 

in which subjects were instructed to generate maximum force in each direction.  

Subjects were then instructed to move the cursor quickly and accurately from the rest 

position to a target in one of the 8 directions by applying forces on the splint. At the 

beginning of each trial (Figure 2C) subjects were requested to maintain the cursor within a 

transparent sphere at the central start position for 1 s (tolerance of 2% MVF). Next, a go 

signal was given by displaying a transparent target sphere while the start sphere disappeared. 

Subjects were instructed to reach the target as quickly as possible and to remain there for 0.2 

s (tolerance of 2% MVF). After successful target acquisition the cursor and the target 

disappeared indicating the end of the trial. Trials had to be completed within 2 s from the go 

signal.  

In the second force control block subjects performed 72 trials to targets positioned at 

force magnitudes corresponding to 10%, 20%, and 30% of MVF (random order within cycles 

of 8 directions). After this block there was a five minute pause to process the recorded data in 

order to construct the myoelectric controller and the virtual surgeries. All subsequent EMG 

control blocks (Figure 2D) consisted of 24 trials with targets at 20% MVF in random order 

within cycles of 8 directions. The first EMG control block served to familiarize subjects with 

EMG control. Then subjects performed two series of blocks, of compatible and incompatible 

surgeries, respectively (see below). Each series consisted of 24 blocks: 6 baseline blocks, 

followed 12 virtual surgery blocks, followed by 6 washout blocks. In between the two series 

subjects rested for 10 minutes; they were also allowed to rest at any time during the 

experiment. After the two series there were six additional blocks without surgery. The 
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experimental protocol for the control experiment (see below) consisted of the same block 

structure and order with compatible and incompatible force transformations instead of virtual 

surgeries. 

 

EMG-to-force mapping. If the arm is in a fixed posture, the force generated at the hand is 

approximately a linear function of the activation of muscles acting on shoulder and elbow:  

 f = H m (1) 

where f is the generated 2-dimensional force vector, m is the 13-dimensional vector of 

muscle activations, and H is a matrix relating muscle activation to force (dimensions 2 × 13).  

The EMG-to-force matrix (H) was estimated using multiple linear regressions of each applied 

force component, low-pass filtered (2nd order Butterworth, 1 Hz cutoff), with EMG signals 

recorded during the initial force control block (dynamic phase, i.e., time from target go until 

the target has been reached), low-pass filtered (2nd order Butterworth, 5 Hz cutoff), and 

normalized to the maximum EMG activity during the generation of MVF. We verified that 

the choice of filter parameters for the estimation of the H matrix did not affect the quality of 

the force reconstruction during EMG control by investigating different force and EMG cutoff 

frequencies. Figure 3A illustrates the columns of the EMG matrix (i.e., the force associated to 

each muscle, hi) estimated in subject 2. 

 

Synergy extraction and number of synergies. Muscle synergies were identified by non-

negative matrix factorization (Lee and Seung, 1999) from EMG patterns recorded during 

force control from the go signal to target acquisition (dynamic phase):  

 m = W c (2) 

with W a M × N synergy matrix whose columns are vectors specifying relative muscle 

activation levels, and c a N-dimensional synergy activation vector, N number of synergies, 
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and M number of muscles. EMG patterns were first low-pass filtered (2nd order Butterworth 

filter, 5 Hz cutoff frequency) and rectified, their baseline noise level was then subtracted, and 

finally they were normalized to the maximum EMG activity of each muscle recorded during 

the generation of MVF. Baseline noise was estimated at the beginning of the experiment and 

updated periodically throughout the experiment while the subject was relaxed. For each 

possible N from 1 to M, the extraction algorithm was repeated 10 times and the repetition 

with the highest reconstruction R2 was retained. N was then selected according to two criteria. 

The first criterion was a fixed threshold on the fraction of data variation explained by the 

synergies: N was selected as minimum number of synergies explaining at least 90% of the 

data variation. The second criterion was the detection of a change in slope in the curve of the 

R2 value as a function of N. A series of linear regressions were performed on the portions of 

the curve included between N and its last point (M). N was then selected as the minimum 

value for which the mean squared error of the linear regression was less than 10-4 (d'Avella et 

al., 2006). In case of mismatch between the two criteria, we used the criterion that selected 

the set of synergies with preferred directions (the direction of the maximum of the cosine 

function best fitting the directional tuning) of the synergy activation coefficients (c in 

Equation 2) distributed more uniformly and, in particular, with the smallest number of similar 

preferred directions. Thus, we arranged the preferred direction vectors on a unit circle, we 

considered all adjacent pairs, and we selected the set of synergies with the smallest number of 

pairs with an angular difference below 20 deg. Figure 3B illustrates the synergies extracted 

from subject 2 and Figure 3C the forces associated to those synergies by the EMG-to-force 

matrix (fi = H wi) estimated in the same subject (Figure 3A). 

 

Virtual surgeries and adaptation difficulty. We constructed virtual surgeries that were 

either compatible or incompatible with the synergies as simulated rearrangements of the 
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tendons. Such virtual surgeries were not fully equivalent to a true tendon transfer, since the 

pattern of proprioceptive responses after the virtual surgery did not change, but they provided 

compelling visual feedback on the effect that such a surgery would have had on a 

manipulated object. Virtual surgeries were performed during myoelectric control by altering 

the EMG-to-force mapping (H), as after a simulated rearrangements of the tendons, by 

applying a rotation in muscle space (H’ = H T, Figure 3D and F). For each subject, 

compatible and incompatible virtual surgeries were constructed according to the identified 

synergies in force control. Both types of virtual surgeries allowed the generation of any 

planar force with a new muscle activation vector m’. However, only for compatible surgeries 

(Tc) all force directions could be generated by recombining the existing synergies (c’ in 

equation 2, Figure 3E). Incompatible surgeries (Ti) in contrast were constructed such that 

muscle activation vectors obtained by synergy combinations could only generate forces in 

one dimension (Figure 3G). Thus, if the controller is modular, i.e., synergies generate the 

muscle patterns, we expected adaptation to an incompatible surgery to be slower as it requires 

not only adapting the synergy coefficients (c’), as for a compatible surgery, but also learning 

new synergy vectors (W’). In contrast, if synergies are only a parsimonious description of the 

regularities in the muscle patterns selected by a non-modular controller, we expected no 

differences in learning difficulty if the two surgeries require similar changes of the muscle 

activations (m’) to compensate for the surgeries.  

 

Construction of compatible and incompatible virtual surgeries. Virtual surgeries were 

constructed with specific muscle space rotations. Compatible rotations (Tc) were chosen as 

rotations in the subspace spanned by the synergies. In contrast, incompatible rotations (Ti) 

rotated a vector of the same synergy subspace into the null space of H. Specifically, we first 

identified three subspaces of the M-dimensional muscle space. As the number of synergies 
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(N) is in general larger than the dimension of the force space (D = 2), the null space of H 

(dimension M – D, illustrated in orange and labeled N(H) as a set in the Venn diagram of 

Figure 4A, as a vector in Figure 4B, and as a plane in Figure 4C) share a common subspace 

(dimension N – D, magenta set) with the subspace generated by the synergies (dimension N, 

illustrated in cyan and  labeled R(W) in Figure 4). Thus, using singular value decomposition 

of the matrix Wo
T N = U S VT,  where Wo

 is an orthonormal basis of the range of W, N is an 

orthonormal basis of the null space of H, and S has N – D non-zero singular values, we can 

identify two orthonormal bases Wc = Wo [u1 … uN-D] and Nc = N [v1 … vN-D] of the common 

subspace between synergies and null space, an orthonormal basis Wnc = Wo [uN-D+1 … uN] of 

the subspace of synergy vectors not in the null space, and an orthonormal basis Nnc = N [vN-

D+1 … vM-D] of null space vectors not generated by synergy combinations.  Then, the 

compatible rotation Tc was constructed such that a vector w in the span of Wnc is rotated onto 

a second vector w’ of the same subspace (green arrow in Figure 4A and B). Any two non-

collinear vectors w and w’ in the span of Wnc could be chosen and we simply randomly 

selected two distinct vectors of Wnc. In this way the forces associated to the synergies are 

altered but all force directions can be generated by recombining the same synergies.  In 

contrast, the incompatible rotation Ti rotates a vector w in the span of Wnc onto a vector n in 

the span of Nnc (red arrow in Figure 4A and C). In this way, the muscle patterns generated by 

synergy combinations along w do not produce any force after the surgery and synergy 

combinations can generate forces only in one dimension (see Figure 3G).  

We used rotations in muscles space (i.e. transformations of the muscle activity according 

to an orthonormal matrix T: TT T = T TT = 1, where 1 is the identity matrix) because they are 

invertible transformations which do not change the norm of the muscle pattern. However, in 

general, any pairs of transformations Tc and Ti such that H Tc,  H Ti, and H Tc W span the 

force space and H Ti W does not span the force space (i.e., it does not have full rank) would 
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be appropriate. To construct a rotation in the M-dimensional muscle activation space that 

maps a vector a into a (non-collinear) vector b (both vectors of unit length) we performed the 

following procedure: 

1. we constructed an orthonormal basis of the M-dimensional muscle space Q = [q1 q2 … 

qM] by orthogonal-triangular decomposition (Matlab function qr) of [a  b] = Q R; 

2. we computed the angle θ between a and b (cosθ = aT b = R12; sinθ = R22) and the rotated 

basis vectors QR = [q1
r q2

r … qM
r]:  

• q1
r = cosθ q1 + sinθ q2; 

• q2
r
 = −sinθ q1 + cosθ q2;  

• qi
 r

  = qi for i = 3…M; 

3. and we constructed the rotation matrix T = QR QT. 

In the compatible case a = w and b = w’ while in the incompatible case a = w and b = n. 

Finally, to make the changes in the muscle patterns required to compensate the two 

types of surgeries as similar as possible, for each subject, the compatible rotation angle was 

chosen such that a difficulty index (Idiff), defined as the average change across muscles and 

force targets in muscle activity required to perform the task after the surgery, was the same in 

the two cases (see Table 1). Specifically the difficulty index is defined as 

Idiff = 
13 8

1 1

'ik ik
i k

m m
= =

−  

where mik  is the activity of the i-th muscle for the k-th force target, normalized to the 

maximum across force targets before the surgery, and m’ik  the same activity after the surgery. 

For each force target k the muscle activation vectors mk and m’k are computed as the 

minimum norm, non-negative solution of the equations fk = H mk and fk = H T m’k 

respectively. 

 



 

14 
 

Compatible and incompatible force transformations. For each muscle activation m, a 

muscle rotation T generates a force transformation of f = H m onto f’ = H m’ = H T m. To 

assess whether differences in the force transformations associated with compatible (Tc) and 

incompatible (Ti) muscle rotations could affect adaptation rates, we conducted a control 

experiment in which subjects were required to adapt to force transformations close to those 

generated by compatible and incompatible virtual surgeries. We approximated the force 

transformation generated by a muscle rotation T as a linear force transformation f’ = V f, 

with V = H T H+ (where H+ is the pseudo-inverse of H). Force transformations were 

constructed from compatible and incompatible muscle rotations which were generated in 

exactly the same way as for virtual surgeries. Note that all force transformations are 

compatible with the synergies because they do not affect the ability of synergies to span the 

entire force space. If the controller were non-modular and adaptation after an incompatible 

muscle rotation were slower because of the nature of the force transformation, we would 

expect adaptation to an incompatible force transformation (Vi = H Ti H
+) to be also slower 

than the adaptation to a compatible force transformation (Vc = H Tc H
+). In contrast, if the 

controller were modular and differences in force transformations did not affect adaptation 

difficulty we would expect similar adaptation rates.  

 

Data analysis. Task performance was quantified by the angular deviation of the initial 

movement direction of the cursor with respect to target direction and by the fraction of trials 

in which the cursor reached and remained in the target within the instructed time intervals. 

The angular deviation was computed as abs(θtarget – θcursor), where θtarget is the target direction  

and θcursor is the direction of the displacement between the position of the cursor at movement 

onset and at the first following peak of its tangential velocity. Taking the absolute value 

avoided cancellations when averaging the values of the angular deviations across targets with 
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different signs for the difference between target direction and cursor initial direction.  

Learning rates of both performance measures were estimated for each subject and type of 

perturbation by a single exponential fit of block averages. We verified that all results were 

not affected by calculating the angular error using the position of the cursor at 100 ms after 

movement onset instead of the position at the first velocity peak.  Finally, we quantified the 

changes of the synergistic organization of muscle patterns throughout the experiment by 

reconstructing them as combination of the synergies extracted at the beginning of the 

experiment (force control block) and computing a reconstruction R2 value for each block. The 

reconstruction of the muscle patterns of each block was performed using the non-negative 

matrix factorization algorithm initialized with the synergies extracted at the beginning of the 

experiments and updating only to the combination coefficients (d'Avella et al., 2006).   

 

Statistical analysis. Differences in performance measures and learning rates between blocks 

or perturbation types were assessed by t-test statistics (paired, two-tailed) after verifying the 

normality of the distributions (Lilliefors test). One of the 8 subjects participating to the 

control experiment was unable to properly follow the instructions and to perform the task 

even in the initial force control block and was excluded from the analysis. 

 

RESULTS 

Adaptation to compatible virtual surgeries is faster than to incompatible virtual surgeries 

We compared adaption rates to novel compatible and incompatible surgeries constructed 

using a virtual environment. Naïve participants (n = 8, Table 1) reached targets on a virtual 

desktop by displacing a cursor according to either the force applied on a physical handle 

(force control) or the force estimated from the EMG activity recorded from many shoulder 

and arm muscles (myoelectric or EMG control). A linear model (Eq. 1) estimated during the 
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initial block of trials performed in force control adequately captured the relationship between 

EMG and force (R2 = 0.80 ± 0.06, mean ± s.d., n = 8) and all subjects were able to perform 

the task immediately after switching to EMG control.  

 Before undergoing a virtual surgery, using EMG control, subjects displaced the cursor 

from a central start location to one of eight targets arranged on a circle along approximately 

straight paths (Figure 5, first column). Immediately after a surgery, irrespective of its type, 

cursor movements were poorly controlled as the muscle patterns normally used to generate a 

force towards the target directed the cursor in a different direction (Figure 5, second column). 

Task performance, quantified by the angular error of the cursor’s initial movement direction 

with respect to the target direction and by the fraction of trials in which the cursor did not 

reach and hold the target position in the available time, was significantly worse in the first 

block after the surgery than in the last block preceding it (p < 10-4, t-test, for both surgery 

types and both performance measurements, Figure 6A and B, red and green, see also Table 2 

for further details). With practice, subjects improved their ability to generate new muscle 

patterns and both performance measures improved. However, the improvement was clearly 

smaller after the incompatible than after the compatible virtual surgery, with a significantly 

faster learning rate (single exponential fit, see Materials and Methods) during the compatible 

perturbation (p < 10-4 for initial direction error and p = 0.005 for fraction of unsuccessful 

trials, t-test). Some targets could not be reached even after many trials of practice with the 

incompatible surgery (Figure 5, third column). The number of unsuccessful trials did not 

significantly decrease after the incompatible surgery (p = 0.102, comparison between the first 

and last block, t-test), whereas it did decrease significantly after the compatible surgery (p < 

10-4). On average, the performance in the last block after the compatible surgery was 

significantly better than after the incompatible surgery (p = 0.026, for initial direction error 

and p = 0.003 for fraction of unsuccessful trials, t-test). In the washout phase, clear negative 
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aftereffects were observed  after undoing the compatible virtual surgery.  For most targets, 

the initial cursor movement in the first movement in the washout of the compatible virtual 

surgery (Fig. 5, fourth column) was deviated in the opposite direction with respect to the 

target than in the first movement after the perturbation was introduced (Fig. 5, second 

column). Such negative aftereffects were not apparent in the mean angular deviation of the 

first washout block (Fig. 6, averaged across targets and subjects) because, to prevent 

cancellations when averaging across targets with different signs for the difference between 

target direction and initial movement direction, the angular deviation was defined as the 

absolute value of the angular difference (see Materials and Methods). To quantify negative 

aftereffects, we computed the ratio between the signed initial angle error in the first eight 

trials after surgery and in the first eight trials in the washout. The average ratio across targets 

and subjects for the compatible virtual surgery (0.66 ± 0.45, mean ± st.dev) was significantly 

different from the ratio for the incompatible surgery (0.36 ± 0.32; p = 0.04, t-test, n=8). In 

sum, these results revealed a stronger adaptation to the compatible surgery than to the 

incompatible one, as predicted by modularity.   

 

Compatible and incompatible force transformations show similar adaptation rates  

We wondered whether the observed difference in learning rate after compatible and 

incompatible surgeries might be due only to differences in the forces at the hand required 

after the two types of surgeries, and could have been observed in a non-modular controller as 

well. We conducted a control experiment with naïve participants (n = 7) in which we 

perturbed the virtual force generation with hand force transformations (see Materials and 

Methods) instead of virtual surgeries based on muscle space rotations. These force 

transformations approximated the change in force generated by the virtual surgeries but only 

affected the forces computed with the unperturbed EMG-to-force mapping and did not affect 
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the ability of synergies to span the entire force space. Participants adapted to force 

transformations with smaller initial directional error and number of unsuccessful trials than 

after muscle rotations since the first perturbation block (Figure 6A and B, purple and cyan), 

indicating that force transformations were generally easier to learn, not surprisingly as force 

transformations act on a two-dimensional force space whereas muscle rotations on a 13-

dimensional muscle space. More importantly, participants did not show significant 

differences in adaptation rates (single exponential fit, p = 0.54 for initial direction error and p 

= 0.386 for fraction of unsuccessful trials, t-test) and in both error measures between the two 

types of force transformations in the last perturbation block (p = 0.21 for initial direction 

error and p = 1 for fraction of unsuccessful trials, t-test, see also Table 3 for further details). 

We thus concluded that the differences in adaptation rates observed with virtual surgeries 

were not due to differences in the nature of the force transformations associated to muscle 

rotations but depended on the difficulty in altering the coordination of the muscle activations 

required to generate novel patterns not captured by the muscles synergies usually employed 

for performing the task. 

 

Muscle patterns diverge from synergy structure during incompatible surgery 

Performance improvements after incompatible surgeries, even if they occurred significantly 

more slowly than after compatible surgeries, were associated with changes in the muscle 

patterns that could not be captured by the original muscle synergies. This would be expected 

if an exploration of novel coordination patterns or an organization of new synergies were 

occurring. Synergies identified before any perturbations were introduced could reconstruct 

the muscle patterns observed during the exposure to muscle rotations and force 

transformations. Figure 7A shows an example of muscle patterns (gray area) for different 

reaching trials to one target recorded throughout an experimental session and their 
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reconstruction (solid line) by combinations of the synergies extracted from the first baseline 

experimental block (Figure 7B, left). These synergies captured the muscle patterns before, 

during, and after the compatible virtual surgery, as well as right after the incompatible virtual 

surgery (Figure 7A, first to sixth columns).  However, at the end of the incompatible virtual 

surgery phase (seventh column) the baseline synergies could not capture all the muscle 

waveforms activated for the specific target. Specifically, the synergy reconstruction predicted 

a higher than observed activation of BracRad and a lower than observed activation for 

BicShort and BicLong, TriLong, and DeltP.  These discrepancies between observed and 

reconstructed muscle activations persisted right after the removal of the incompatible virtual 

surgery in the first movement of the first washout block (eighth column). In contrast, the 

synergies extracted from the last block after the incompatible virtual surgery (Figure 7B, 

right) could reconstruct the muscle patterns of that block and those recorded in the first 

washout block but they did not capture all preceding patterns.  Thus, the muscle patterns at 

the end of the incompatible virtual surgeries were captured by synergies that were different 

from those extracted before any surgery. We then quantified the change of muscle pattern 

organization throughout the experiment by assessing how well the baseline synergies 

reconstructed the muscle patterns recorded in all other blocks (Figure 8). On average, across 

all subjects, we found a significant reduction of the muscle pattern reconstruction quality at 

the end of the exposure to incompatible virtual surgery with respect to compatible virtual 

surgery (p = 0.007, comparison between the last compatible and last incompatible virtual 

surgery block and p = 0.72 comparison between the first compatible and first incompatible 

virtual surgery block, t-test; first block after compatible virtual surgery: 0.78 ± 0.19, mean ± 

std; last compatible block: 0.78 ± 0.07 , mean ± std; first block after incompatible virtual 

surgery:  0.75 ± 0.12, mean ± std; last incompatible block: 0.54 ± 0.17, mean ± std). These 

results support the notion that a specific adaptation process is involved in overcoming 
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incompatible surgeries and that this process is active when the set of synergies usually 

employed for a task becomes ineffective. 

 

DISCUSSION 

Several studies have investigated the adaptive processes occurring after a change in the 

mapping between motor commands and visual feedback, such as those induced by looking 

through prisms when throwing (Martin et al., 1996), by rotating the direction of movement of 

a hand-controlled cursor on a computer screen during reaching (Krakauer et al., 2000), and 

by remapping finger joint angles into cursor positions through a linear transformation (Mosier 

et al., 2005). These studies have suggested that motor adaptation involves adjustments in the 

parameters of internal models of the body and the environment driven by sensory prediction 

errors (Shadmehr et al., 2010) as well as changes of the control policies due to reward and 

repetition (Krakauer and Mazzoni, 2011; Wolpert et al., 2011). In contrast with previous 

adaptation studies which altered the sensory feedback associated with motion or force, we 

altered the effect of muscle activation patterns using myoelectric control. Such an approach 

allowed us, for the first time, to probe the structure of the internal model of the 

musculoskeletal system by assessing its capability to overcome simulated virtual surgeries 

that involved complex rearrangements of tendons and to provide direct support to the 

modular control hypothesis.  

 A modular organization may allow the CNS to rapidly acquire and to efficiently 

control motor skills, overcoming the complexity inherent in the coordination of the many 

degrees of freedom of the musculoskeletal system (Bernstein, 1967). Adequate, yet possibly 

sub-optimal, control policies for generating a muscle activation pattern driving an end-

effector onto a visual target, as in our task, and, in general, for accomplishing a variety of 

different goals may be constructed by combining a small number of modules (Berniker et al., 

2009; McKay and Ting, 2012). Modules such as muscle synergies may capture regularities in 
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the sensorimotor mappings shared across tasks and conditions, reducing the number of 

parameters to be selected to generate a motor command and to be adjusted to compensate for 

a perturbation or to acquire a new skill. Thus, the dimensionality of the motor commands 

generated by a modular controller is expected to be constrained by the number of modules 

and, if the number of modules is smaller than the maximal dimensionality, to provide an 

observable signature of modularity. Indeed many recent studies have shown that the muscle 

patterns recorded in a variety of conditions and behaviors can be reconstructed by the 

combinations of a number of muscle synergies much smaller than the maximal 

dimensionality, in the spatial and in the temporal domains, of the motor commands (Ting and 

McKay, 2007; Bizzi et al., 2008; d'Avella and Pai, 2010; Lacquaniti et al., 2012; d'Avella and 

Lacquaniti, 2013). However, task constraints and biomechanical demands might also give 

rise to low-dimensional motor commands independently of modularity (Todorov, 2004; 

Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 2012) and the observation of low-

dimensionality does not provide, per se, definitive evidence for modularity. Our approach, in 

contrast, allows for directly testing a causal prediction coming from a sub-optimal 

characteristic of modularity: as modularity allows efficient learning of control policies by 

reducing the number of parameters it also constrains the policies that can be learned with the 

modules. Thus, our observation that adapting to perturbations which are incompatible with 

muscle synergies is much harder than adapting to compatible perturbations provides evidence 

for modularity deriving from a test of a causal manipulation of the controller rather than from 

a parsimonious description of its output. 

 Our results suggest that two distinct adaptive processes with different learning rates 

operate in a modular controller. A fast process may be responsible for reducing the error 

between the force generated by the synergy combination and the force target by adjusting the 

synergy activation coefficients, i.e., adapting the sensorimotor transformation, possibly 
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implemented in the cerebellum (Shadmehr and Krakauer, 2008; Taylor et al., 2010; Galea et 

al., 2011). In our task, such a process is effective in gradually reducing the force error when 

adapting to compatible virtual surgeries and it is likely that the same process is involved in 

adaptation to visuomotor (Martin et al., 1996) and dynamic (Shadmehr and Mussa-Ivaldi, 

1994)  perturbations. Indeed, in the washout phase after compatible virtual surgeries clear 

negative aftereffects were observed, indicating that a modification in the internal model had 

occurred. In contrast, incompatible surgeries remap synergy forces along a single dimension 

and no adjustment of the synergy activation coefficients can reduce the force error in all 

directions. For this special class of perturbations, a second slower process may be responsible 

for changing the structure of the synergies to recover their capability of generating forces in 

all directions. Such a process may require exploring new muscle coordination patterns and 

acquiring new task-specific synergies. New synergies may be stored in the motor cortex and 

expressed through the corticospinal connectivity (Kargo and Nitz, 2003; Gentner and 

Classen, 2006; Rathelot and Strick, 2006; Reis et al., 2009; Gentner et al., 2010; Overduin et 

al., 2012). Synergy learning might be engaged only when the existing synergies are unable to 

perform a task, such as after a major change in the musculoskeletal system due to injury or 

when learning a new motor skill. Indeed, modification of existing synergies or organization 

of new synergies may be a key neural mechanisms underlying skill acquisition, a process 

which typically occurs on much longer time scales than motor adaptation (Reis et al., 2009). 

Thus, differences in skill learning difficulty may be related to synergy compatibility. 

Processes with different learning rates and different capacities for retention have been 

proposed to explain savings and anterograde interference (Smith et al., 2006). However, 

multi-rate processes have been characterized in adaptation tasks that likely only require 

recombining existing synergies and they might be distinct from the process involved in 

learning new synergies. In contrast, adjusting existing muscle synergies or organizing new 
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synergies may be a form of structural learning in sensorimotor control (Braun et al., 2009). 

Finally, generalization during adaptation to mechanical perturbations suggests that changes in 

internal models may be represented by linear combinations of motor primitives that map state 

variables, such as end-effector position and velocity, into motor commands (Thoroughman 

and Shadmehr, 2000; Donchin et al., 2003; Sing et al., 2009). Muscle synergies may also 

function as motor primitives for constructing sensorimotor transformations and for 

representing changes in internal models through the mechanisms of synergy recombination 

and synergy re-organization.  

Myoelectric control has been used in two recent studies to investigate how muscle 

coordination is affected by simulated changes in limb biomechanics (de Rugy et al., 2012b, a) 

and to examine muscle covariation while learning to coordinate pairs of muscles (Nazarpour 

et al., 2012). The observation of habitual rather than optimal patterns of muscle activity after 

simulated muscle paralysis or increased noise reported by de Rugy and colleagues is fully 

compatible with the organization and modulation of muscle synergies. However, that study 

did not directly test modularity and was not designed for that purpose. The study of 

Nazarpour and colleagues tested the flexibility of the patterns of trial-by-trial covariation in 

the activity of an arbitrary pair of finger and wrist muscles around a single target level of 

activity and not the flexibility of the muscle synergies underlying the modulation of a large 

number of elbow and shoulder muscles across multiple target directions. While it is not clear 

whether the shaping of trial-by-trial covariation in repetitions of the same task and the 

modulation of muscle patterns across task conditions share the same mechanisms, the notion 

of flexible muscle synergies is in line with our idea of an adaptive process underlying 

synergy exploration and re-organization after an incompatible virtual surgery. However, our 

results suggest that flexibility is present in a modular architecture both in the synergy 

combinations and in the synergy structure yet it is expressed at different time scales. 



 

24 
 

In the long term, understanding the role of modularity in motor learning may lead to 

effective neuro-rehabilitation, usable neural interface systems, and novel biologically-

inspired adaptive controllers for skilled robots. The ability to distinguish motor impairments 

caused by neurological lesions due to abnormal synergy recruitment (Cheung et al., 2009) or 

to altered synergy organization (Cheung et al., 2012) might be used for developing novel 

diagnosis tools and effective rehabilitation protocols (Safavynia et al., 2011). Specifically, 

rehabilitation exercises in a virtual environment with myoelectric control could exploit 

synergy-based feedback to promote recovery of functional synergy recruitment and synergy 

re-organization and be a low-cost alternative to robot-assisted therapy. Moreover, one of the 

key challenges for neural interface systems, such as those using neural signals recorded from 

the motor cortex to control a computer cursor or a robotic arm (Hatsopoulos and Donoghue, 

2009),  is to make them more useful aids to people with disabilities by improving the ease 

with which a user can learn to operate them. Decoding muscle synergy recruitment from 

neural recordings might result in interfaces that are easier to learn than those based on 

decoding movement intentions or kinematic plans, as the motor cortex is organized to recruit 

synergies (Rathelot and Strick, 2006; Overduin et al., 2012) and recombining existing 

synergies is faster than learning new ones. Finally, today’s robots have very limited and 

inflexible motor skills that are not acquired through practice and must be pre-programmed. 

The modular organization of biological movement may provide inspiration for the design of 

adaptive robot control architectures that can quickly learn new and richer motor skills by re-

using and recombining modules implementing basic skills.  
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FIGURE LEGENDS 

Figure 1. Concept of incompatible surgery. Illustration of a tendon transfer surgery that 

makes a putative muscle synergy unable to generate any force. (A) An idealized arm with two 

pairs of antagonist muscles at two joints (m1 to m4), each generating a force in a specific 

direction at the endpoint (f1 to f4), is controlled by a muscle synergy recruiting two muscles 

simultaneously (m1 and m2). The activation of the synergy generates a force that is the sum of 

the forces generated by each constituent muscle (fsyn = f1 + f2). (B) A tendon transfer surgery 

affecting the force generated by two muscles. (C) After the surgery, one of the muscles 

participating to the synergy (m1’) generates a force in a direction that cancels the force of the 

other synergistic muscle (m2). The synergy no longer generates any force (fsyn’ = f1’ + f2’ = 

0). 

 

Figure 2. Experimental setup and protocol. Subjects sat in front of a desktop (A) and 

applied forces on a transducer attached to a forearm, wrist, and hand splint. A flat monitor 

occluded the subject’s hand and displayed a virtual scene co-located with the real desktop. 

(B) Transparent spheres positioned on a horizontal plane with centers at the same height as 

the center of the palm indicated force targets that the subjects were instructed to reach with a 

smaller spherical cursor moving on the same plane according to the force applied (force 

control) or estimated from EMGs recorded from 13 arm and shoulder muscles (EMG control, 

see Materials & Methods). (C) Subjects were instructed to perform a center-out reaching task 

in which that had to maintain the cursor in a central start location for 1 s, reach a target as 

soon as it appeared at one of 8 peripheral locations, and maintain the cursor at the target for 

0.2 s. (D) Each subject performed a single experimental session consisting of 16 trials of 

maximum voluntary force generation in 8 directions (MVF), 72 trials of reaching to targets in 

8 directions at three force magnitudes (10%, 20%, 30% MVF) in force control, and the 
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following blocks of 24 trials each in EMG control: one block of familiarization (FAM), two 

series on 24 blocks for each surgery type (6 baseline blocks, 12 surgery blocks, 6 washout 

blocks), and 6 additional baseline blocks. 

 

Figure 3. Examples of EMG-to-force matrix, synergies, and virtual surgeries.  (A) EMG-

to-force matrix H estimated for subject 2 from EMG and force data recorded during the 

generation of planar isometric forces. Each column of H, representing the planar force 

generated by one muscles, is illustrated by a colored arrow (1: brachioradialis, 2: biceps 

brachii short head, 3: biceps brachii long head, 4: triceps brachii lateral head, 5: triceps 

brachii long head, 6: infraspinatus, 7: anterior deltoid, 8: medial deltoid, 9: posterior deltoid, 

10:  pectoralis major, 11: teres major, 12: latissimus dorsi, 13: middle trapezius). (B) Muscle 

synergies (matrix W) are identified by non-negative matrix factorization from the EMG data. 

Each column of W, a vector specifying a specific pattern of relative level of muscle 

activation, is illustrated by color-coded horizontal bars. (C) Forces associated to each muscle 

synergy (i.e., columns of the matrix product H W) span the entire force space. (D) Forces 

generated by muscles after a compatible virtual surgery obtained by recombination of the 

original forces as after a complex re-arrangement of the tendons (Tc). (E) Synergy forces 

after the compatible surgery still span the force space. (F) Muscle forces after an 

incompatible surgery generated by a rotation matrix (Ti) that maps a vector in the column 

space of W into a vector in the null space of H. (G) Such rotation aligns the forces associated 

to all synergies in the same direction, thus synergy forces after the incompatible surgery do 

not span the entire force space. 

 

Figure 4. Construction of compatible and incompatible virtual surgeries. (A) Venn 

diagram illustrating the different subspaces of the muscle space used for the construction of 
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the virtual surgeries: the column space of the synergies R(W) (cyan set),  the null space of the 

EMG-to-force matrix N(H) (orange set), and the common subspace of N(H) and R(W) 

(magenta set). w and w’ represent generic vectors in the column space of the synergies, and n 

a vector in N(H) which is not in R(W). (B) A compatible rotation in muscle space maps a 

vector w in R(W) (illustrated as a cyan plane) which is not in N(H) (illustrated as an orange 

line) into a second vector w’ in R(W). (C) An incompatible rotation in muscle space, in 

contrast, maps a vector w in R(W) which is not in N(H) (illustrated as an orange plane)  into 

a vector n in N(H) which in not in R(W) (illustrated as a cyan plane).  

 

Figure 5. Example of cursor trajectories. Trajectories of the cursor on the horizontal plane 

during individual trials of subject 2 are shown for different targets (color coded), before 

undergoing  a virtual surgery (baseline, first column), immediately after a virtual surgery 

(second column), at the end of the exposure to the virtual surgery (third column), and after 

undoing the virtual surgery (washout, last column), for compatible (first row) and 

incompatible (second row) virtual surgeries.  The motion of the cursor was simulated in real-

time as that of a mass attached by a damped spring to the center of the real handle under the 

force applied to the handle estimated from the recorded EMGs (see Materials and Methods). 

Trajectories are shown from target go signal up to the end of the trial.  

 

Figure 6. Comparison of task performance changes during virtual surgery and control 

experiments.  (A) Angular error of the initial movement direction with respect to the target 

direction, averaged across subjects and blocks of 24 trials (solid lines, shaded areas indicate 

s.e.m.) for compatible virtual surgery (green), incompatible virtual surgery (red), compatible 

control (cyan), and incompatible control (magenta) experiments. (B) Fraction of trials in 

which the cursor did not reach and hold on the target, averaged across subjects and blocks of 

24 trials. Differences between compatible and incompatible conditions in both performance 
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measures were significant at the end of the exposure to the perturbation (surgery block 12) in 

the virtual surgery experiments but not in the control experiments.  

 

Figure 7. Examples of muscle pattern reconstruction by baseline synergies and 

synergies extracted from the last block after the incompatible surgery. (A) Muscle 

patterns recorded in subject 2 for different trials (different columns)  to one target (direction 

225 deg, gray areas) throughout an experimental session and their reconstruction by the 

synergies extracted from the initial baseline block (solid lines) and by the synergies extracted 

from the last block after incompatible surgery (dotted lines). The vertical lines indicate the 

time of movement onset (1), the time of the first peak of the cursor tangential velocity (2), 

and the time of target acquisition (3). The corresponding cursor trajectories and events (1-3) 

are shown for each trial above the muscle activation waveforms.  (B) Synergies extracted 

from the initial force control block (left, as in Figure 3B) and extracted from the last block 

after the incompatible surgery (right) for the same subject and used for the muscle pattern 

reconstruction in (A). Synergy vectors are normalized to their maximum muscle activation.    

 

 

Figure 8. Reconstruction quality of muscle patterns by synergy combinations during 

virtual surgeries.  Synergy reconstruction error (R2) averaged across subjects and blocks of 

24 trials (solid lines, shaded areas indicate s.e.m.) for compatible surgery (green), 

incompatible surgery (red), compatible control (cyan), and incompatible control (magenta) 

experiments. The reconstruction quality was significantly reduced only during the exposure 

to incompatible surgeries, indicating a re-organization of the muscle patterns.  
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TABLES 

Table 1. Summary of individual characteristics and results.   

Subject 

Id† 

Age 

(years) 

Sex Height 

(cm) 

No.  of 

synergies 

R2 of  synergy 

reconstruction 

Idiff (Tc) Idiff (Ti) R2  of force 

reconstruction by 

H matrix and 

EMGs  

1 24 m 185 4 0.91 1.33 1.32 0.75 

2 20 m 178 4 0.95 1.33 1.33 0.89 

3 25 m 180 4 0.92 1.24 1.23 0.77 

4 27 f 162 4 0.93 1.51 1.50 0.84 

5 24 f 164 4 0.91 1.26 1.25 0.72 

6 22 f 178 5 0.96 1.38 1.38 0.84 

7 26 f 164 5 0.91 1.49 1.48 0.75 

8 24 f 178 4 0.91 1.38 1.35 0.84 

9 26 m 177 4 0.92 1.33 1.43 0.83 

10 25 f 162 4 0.96 1.68 1.40 0.82 

11 21 f 167 4 0.92 1.23 1.32 0.84 

12 27 m 168 3 0.91 1.34 1.33 0.82 

13 25 m 172 4 0.95 1.20 1.17 0.85 

14 28 m 183 4 0.90 1.28 1.26 0.81 

15 21 f 161 5 0.91 1.56 1.55 0.77 

Mean 

± s.d. 

24.3 ± 

2.4 

 171.9 

± 8.4 

4.1 

± 0.5 

0.92 

± 0.02 

1.37 

± 0.14 

1.35 

± 0.11 

0.81 

± 0.05 

 

†Subjects 1 to 8 participated to the virtual surgery experiment, subjects 9 to 15 to the force 

transformation control experiment. 
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Table 2. Summary of performance measures of the main experiment.   

 

Main Experiment  Perturbation Type 1st Block after surgery  (mean ± std) 
Last Block after surgery (mean ± std) 

 BL before surgery (mean ± std) 
 Adaptation Rate parameters y = A exp –λx 

λ AAngular Error [deg] comp 59.0 ± 11.6 24.9 ± 9.6 9.3 ± 3.5 0.094 ± 0.031 57.9 ± 12.7incomp 60.5 ± 19.9 44.8 ± 16.9 9.5 ± 1.4 0.025 ± 0.033 59.9 ± 18.7Unsuccessful trials [%] comp 83.8 ± 11.7 38.5 ± 17.4 19.8 ± 19.9 0.074 ± 0.045 80.2 ± 16.1 incomp 87.5 ± 12.6 75.0 ± 14.8 10.9 ± 8.0 0.013 ± 0.017 87.3 ± 14.7 
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Table 3. Summary of performance measures of the control experiment.   

Control Experiment Perturbation Type 1st Block after surgery  (mean ± std) 
Last Block after surgery (mean ± std) 

 BL before surgery (mean ± std) 
 Adaptation Rate parameters y = A exp –λx 
λ A Angular Error [deg] comp 22.0 ± 14.5 12.4 ± 5.7 9.7 ± 4.2 0.039 ± 0.030 18.8 ± 9.7    incomp 20.3 ± 8.0 15.3 ± 5.1 9.8 ± 4.7 0.020 ± 0.022 19.0 ± 9.0Unsuccessful trials [%] comp 47.6 ± 15.4 39.3 ± 18.3 28.6 ± 11.6 0.027 ± 0.052  45.7 ± 15.9  incomp 49.4 ± 17.7 39.3 ± 15.9 21.4 ± 11.6 0.006 ± 0.032  42.3 ± 17.6
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